New peer-reviewed papers added to our summary of literature

Breathing walls: The design of porous materials for heat exchange and decentralized ventilation
Published in Energy and Buildings

Researchers at Harvard University studied how pores in building materials can be designed,
such that incoming fresh air can be efficiently tempered while conduction losses are kept to a minimum.
With the use of gSKIN heat flux sensors they could determine the total convective heat transfer
in blowing and sucking mode through porous materials.

DOI: https://doi.org/10.1016/j.enbuild.2017.05.036

Bioinspired microactuators for zero-power heat flux regulation
Published in Institute of Electrical and Electronics Engineers

Researchers from ETH Zurich developed a zero-power, bioinspired heat sink where the thermal resistance is reduced with increasing ambient temperature whereas the heat flux through the heat sink is increased. This effect is established by microactuators with a very high temperature sensitivity. With the usage of gSKIN sensors they could characterize the properties of the developed device.

DOI:http://ieeexplore.ieee.org/abstract/document/7994478/

More news

Heat generation in all-solid-state supercapacitors with graphene electrodes and gel electrolytes

Read more

Elevating low-emissivity film for lower thermal transmittance with heat flux sensors

Read more

Experimental validation of a steady periodic analytical model for Breathing Walls

Read more

greenTEG awarded again with the H2020 Seal of Excellence.

Read more

Sustainable freshwater production using passive membrane distillation and waste heat recovery from portable generator sets

Read more

Angstrom configuration for absolute measurement on heat losses of a metal sample by active thermography

Read more

We are launching a new venture: CORE

Read more

Ronnie Schildknecht joins greenTEG as sports advisor

Read more
Read all