New peer-reviewed papers added to our summary of literature

Breathing walls: The design of porous materials for heat exchange and decentralized ventilation
Published in Energy and Buildings

Researchers at Harvard University studied how pores in building materials can be designed,
such that incoming fresh air can be efficiently tempered while conduction losses are kept to a minimum.
With the use of gSKIN heat flux sensors they could determine the total convective heat transfer
in blowing and sucking mode through porous materials.

DOI: https://doi.org/10.1016/j.enbuild.2017.05.036

Bioinspired microactuators for zero-power heat flux regulation
Published in Institute of Electrical and Electronics Engineers

Researchers from ETH Zurich developed a zero-power, bioinspired heat sink where the thermal resistance is reduced with increasing ambient temperature whereas the heat flux through the heat sink is increased. This effect is established by microactuators with a very high temperature sensitivity. With the usage of gSKIN sensors they could characterize the properties of the developed device.

DOI:http://ieeexplore.ieee.org/abstract/document/7994478/

More news

Thermophotovoltaic Efficiency Measurement: A Novel Experimental Method by Researchers at the Universidad Politecnica de Madrid

Read more

Join us - we are hiring!

Read more

U-value and Mold Measurements on Heritage Buildings Using greenTEG`s gO-Measurement System

Read more

Offices are closed from 24. December to January 3rd

Read more

greenTEG Receives Horizon 2020 Funding For the Development of a Disruptive Wearable Biosensor System

Read more

Heat flux and temperature measurements on glass envelope and bellows of parabolic trough receivers

Read more

How to Measure the U-Value: Temperature Based Method vs. Heat Flux Based Method

Read more

gSKIN® Digital Sensor Data Logger Kit

Read more
Read all