Local heat distributions in Li-ion batteries characterized precisely with new method

Researchers from the University of Caen Normandy in France used greenTEG’s heat flux sensor to investigate local heat distribution in prismatic Lithium-ion batteries at various charge/discharge rates.

Li-ion batteries are widely used as rechargeable energy storage systems for electric vehicles and hybrid electric vehicles, which play an important role in the current energy transition. Temperature generation affects the performance and lifetime of a battery and can even entail a serious safety risk. The thermal characterization of Lithium-ion batteries is therefore needed to develop an effective thermal management system for their optimal and safe use.

To do so, the researchers developed a new method. They did not rely on surface temperature measurements and modelling of heat transfer, but used heat flux sensors, temperature sensors and infrared imaging to investigate reversible and irreversible local heat fluxes generated by the battery precisely. They observed that the temperature is higher at the beginning of the charge cycle and that increasing the charge/discharge current rate increases the battery temperature, the heat flux, and the part of the irreversible heat compared to the reversible heat.

Rizk, Rania et al (2019): Experimental analysis on Li-ion battery local heat distribution Journal of Thermal Analysis and Calorimetry.

Learn more about battery calorimetry with heat flux sensors

More news

Heat generation in all-solid-state supercapacitors with graphene electrodes and gel electrolytes

Read more

Elevating low-emissivity film for lower thermal transmittance with heat flux sensors

Read more

Experimental validation of a steady periodic analytical model for Breathing Walls

Read more

greenTEG awarded again with the H2020 Seal of Excellence.

Read more

Sustainable freshwater production using passive membrane distillation and waste heat recovery from portable generator sets

Read more

Angstrom configuration for absolute measurement on heat losses of a metal sample by active thermography

Read more

We are launching a new venture: CORE

Read more

Ronnie Schildknecht joins greenTEG as sports advisor

Read more
Read all