Experimental analysis and transient thermal modelling of a high capacity prismatic lithium-ion battery

Researchers used heat flux sensors from greenTEG to track thermal behavior in a 60Ah prismatic Li-ion battery. The research has been published in International Communications in Heat and Mass Transfer.

Experimental analysis and transient thermal modelling of a high capacity prismatic lithium-ion battery

Authors: Rania Rizk, Hasna LouahliaHamid Gualous, Pierre Schaetzel

Abstract:

In this paper, a three-dimensional transient model, predicting the thermal behaviour of a 60 Ah prismatic Li-ion battery during charge/discharge cycles under natural convection, is proposed. Also, an experimental test bench is used to charge and discharge the battery at different current rates (1C, 5/6C and 2/3C) in order to track its thermal behaviour using thermocouples and heat flux sensors. The model includes heat generation and solves conduction inside the battery and natural convection as boundary condition. Some of the required parameters, such as heat transfer coefficients, thermal conductivities along y and z directions and electrical resistance, are determined using experimental data. Heat capacity, thermal conductivity along x direction and entropy change are determined based on literature. Simulated battery surface temperatures are compared to experimental measurements resulting in less than 5% relative error. Additionally, core temperatures as well as reversible and irreversible heat generations are simulated using the proposed model. Simulated total heat generation is compared to measured heat generation at steady state showing a good agreement, which makes it possible, using this simple model, to predict the maximum heat generated inside the battery, and consequently the core temperature, in order to design a suitable thermal management system.

Full publication: https://www.sciencedirect.com/science/article/pii/S073519331830071X

More news

greenTEG wins a grant to develop a new sensing solution for early detection of neurodegenerative diseases.

Read more

greenTEG receives the Seal of Excellence from the EU Horizon 2020 program.

Read more

New method for the thermal characterization of window insulation materials developed

Read more

So messen Sie den U-Wert von Fenstern: Ein Beispiel

Read more

How to measure U-Values of Windows: An example

Read more

greenTEG has a new office address

Read more

Measuring a breathing wall`s effectiveness and dynamic behaviour

Read more

Energieberater ENVISYS testet das gO Mess-System

Read more
Read all