Scientists at Southeast University’s School of Energy and Environment (Nanjing, China) used gSKIN® Heat Flux Sensors to characterize the dynamic thermal performance of a novel triple-glazed window filled with PCM. The research has been published in Sustainable Cities and Society, Vol. 38.
DOI: https://doi.org/10.1016/j.scs.2018.01.020
Simulation Research on the Dynamic Thermal Performance of a Novel Triple-glazed Window Filled with PCM
Authors: Shuhong Li, Kaikai Zou, Gaofeng Sun, Xiaosong Zhang
Abstract
The window energy consumption plays an important role in the building energy consumption. Recent researches on the double-glazed window filled with PCM (DW + PCM) show that in summer, the released unwanted heat into the room in the discharge period of PCM in summer night is considerable as well as the overheating phenomenon from the completely melted PCM is non-ignorable, both of which have an adverse effect on the building insulation performance. In order to solve the problems, a configuration of triple-glazed window filled with PCM (TW + PCM) is proposed and the mathematical model is established in this paper. Through the simulation, the dynamic thermal performances of the TW + PCM are obtained. The results show that in typical sunny summer day, the temperature decrement factors are 0.75 and 0.63 respectively, and the energy consumption of TW + PCM is reduced by 21.30% and 32.80% respectively, compared with DW + PCM and triple-glazed hollow window (TW). In addition, the TW + PCM shows a good performance under the typical winter conditions. In conclusion, TW + PCM can avoid overheating phenomenon effectively and has advantageous performance on heat preservation and insulation.
New research paper on Super-Planckian Radiative Heat Transfer published
Read moreTowards Online Personalized-Monitoring of Human Thermal Sensation Using Machine Learning Approach
Read moreCORE will officially supply Team BORA-hansgrohe in 2021
Read moregreenTEG’s gSKIN® BodyTEMP Patch used in membrane-assisted radiant cooling system study
Read moregreenTEG AG launches COREmedical in the U.S. as a clinical thermometer
Read moregreenTEG at the Tour de France
Read moreThermal bridge effect of vertical diagonal tie connectors in precast concrete sandwich panels: an experimental and computational study
Read moregreenTEG flies to the International Space Station!
Read more