Researchers at ETH Zurich’s Laboratory of Thermodynamics in Emerging Technologies just published the results of their research about spontaneous self-dislodging of freezing water droplets and the role of wettability. They discovered a passive ice self-removal mechanism and used it to rationally design self ice-repelling surfaces.
Freezing of water on surfaces is ubiquitous in nature and technology. However, to control ice aggregation and rationally design icephobic surfaces, which passively inhibit ice formation and accretion, a deeper fundamental understanding of the interaction of forming ice with the underlying substrate and environment is necessary. In this work, the researchers report the phenomenon of self-dislodging freezing water droplets, explain its physics, and develop surfaces which inhibit ice aggregation through passive ice self-removal. Successful experiments on a palette of material classes underpin the general applicability and robustness of the effect to control surface icing, and can guide further research in the field of icephobicity.
The researchers used a gSKIN XM 26 9C Heat Flux Sensor to measure heat flux between the bottom of the environmental chamber, the heat flux sensor, and the substrate.
The full publication is available here: http://www.pnas.org/content/early/2017/09/20/1705952114.full
Contact us if you are working on a similar project and would like to measure heat flux in your set-up. We have a dedicated team of engineers with expertise in thermal engineering and the products for high-precision heat flux measurements.
New research paper on Super-Planckian Radiative Heat Transfer published
Read moreTowards Online Personalized-Monitoring of Human Thermal Sensation Using Machine Learning Approach
Read moreCORE will officially supply Team BORA-hansgrohe in 2021
Read moregreenTEG’s gSKIN® BodyTEMP Patch used in membrane-assisted radiant cooling system study
Read moregreenTEG AG launches COREmedical in the U.S. as a clinical thermometer
Read moregreenTEG at the Tour de France
Read moreThermal bridge effect of vertical diagonal tie connectors in precast concrete sandwich panels: an experimental and computational study
Read moregreenTEG flies to the International Space Station!
Read more