A Rapid Response Thin-Film Plasmonic-Thermoelectric Light Detector

--gRAY, Laser Detector, Laser Power Sensor, Scientific publication


Voltage output of the light sensors as a function of the irradiation power. Source: https://www.nature.com/articles/srep37564

Light detection and quantification is fundamental to the functioning of a broad palette of technologies. While expensive avalanche photodiodes and superconducting bolometers are examples of detectors achieving single-photon sensitivity and time resolutions down to the picosecond range, thermoelectric-based photodetectors are much more affordable alternatives that can be used to measure substantially higher levels of light power (few kW/cm2). However, in thermoelectric detectors, achieving broadband or wavelength-selective performance with high sensitivity and good temporal resolution requires careful design of the absorbing element. Here, combining the high absorptivity and low heat capacity of a nanoengineered plasmonic thin-film absorber with the robustness and linear response of a thermoelectric sensor, we present a hybrid detector for visible and near-infrared light achieving response times of the order of 100 milliseconds, almost four times shorter than the same thermoelectric device covered with a conventional absorber. Furthermore, we show an almost two times higher light-to-electricity efficiency upon replacing the conventional absorber with a plasmonic absorber. With these improvements, which are direct results of the efficiency and ultra-small thickness of the plasmonic absorber, this hybrid detector constitutes an ideal component for various medium-intensity light sensing applications requiring spectrally tailored absorption coatings with either broadband or narrowband characteristics.

Authors:  Ying Pan, Giulia Tagliabue, Hadi Eghlidi, Christian Höller, Susanne Dröscher, Guo Hong & Dimos Poulikakos

Scientific Reports 6, Article number: 37564 (2016)


Find out more about thermoelectric sensors for light measurement at www.gRAY.greenTEG.com

Share on LinkedInTweet about this on TwitterShare on Google+Share on FacebookEmail this to someoneDigg thisShare on Reddit